Java Thread Sleep Example

In Java, using the Thread.sleep() method causes the current thread to be suspended in the execution for a specific period of time. Using this method, provides a facility to allow other threads to get some processor time while the current thread is sleeping.

There are two versions of sleep provided. One specifies the sleep time in milliseconds sleep(long millis) and the other that specifies time to the nanosecond sleep(long millis, int nanos).

However, it must be stated that the these sleep times are not precise and may be slighter longer than the time you have specified. It is highly dependent on the underlying operating system implementation of the scheduler.

package com.avaldes.tutorials;

public class SleepThreadExample implements Runnable {
  public void run() {
    for (int i = 0; i<10; i++) {
      try {
        long threadStart = System.currentTimeMillis();
        System.out.format("Thread %d, duration %d\n", i, (System.currentTimeMillis() - threadStart));
      } catch (InterruptedException e) {
        System.out.format("Thread %s interrupted...", Thread.currentThread().getName());
  public static void main(String[] args) throws InterruptedException {
    long startTime = 0;
    SleepThreadExample ste= new SleepThreadExample();
    Thread t1 = new Thread(ste);
    System.out.println("Starting to run thread...");
    startTime = System.currentTimeMillis();
    System.out.println("Total Time spent running...: " + (System.currentTimeMillis() - startTime));


Starting to run thread...
Thread 0, duration 1000
Thread 1, duration 1001
Thread 2, duration 1000
Thread 3, duration 1000
Thread 4, duration 1000
Thread 5, duration 1001
Thread 6, duration 1000
Thread 7, duration 1001
Thread 8, duration 1000
Thread 9, duration 1000
Total Time spent running...: 10007

Important Issues on Thread Sleep

  • Thread.sleep() puts current thread to sleep
  • Thread.sleep() may throw InterruptedException if sleep was interrupted while active
  • Using thread.sleep() pauses the current thread, when the thread awakens the thread goes into ready-to-run state, it is up to the scheduler when thread is to run again
  • sleep holds on to any locks it has acquired when while sleeping, using wait() may be a better alternative

Related Posts

  • Java Thread, Concurrency and Multithreading Tutorial
    This Java Thread tutorial will give you a basic overview on Java Threads and introduce the entire tutorial series on concurrency and multithreading. From here, you will learn about many java thread concepts like: Thread States, Thread Priority, Thread Join, and ThreadGroups. In addition, you will learn about using the volatile keyword and examples on using wait, notify and notifyAll.
  • Java Thread States - Life Cycle of Java Threads
    Get a basic understanding of the various thread states. Using the state transition diagram we show the various states for a Java thread and the events that cause the thread to jump from one state to another.
  • Creating Java Threads Example
    In this post we cover creating Java Threads using the two mechanisms provided in Java, that is, by extending the Thread class and by implementing Runnable interface for concurrent programming.
  • Java Thread Priority Example
    In this post we cover Thread priorities in Java. By default, a java thread inherits the priority (implicit) of its parent thread. Using the setPriority() method you can increase or decrease the thread priority of any java thread.
  • Java ThreadGroup Example
    Sometimes we will need to organize and group our threads into logical groupings to aid in thread management. By placing threads in a threadGroup all threads in that group can be assigned properties as a set, instead of going through the tedious task of assigning properties individually.
  • Java Thread Sleep Example
    We seem to use this method very often to temporarily suspend the current threads execution for a specific period of time. Let's spend some time and familiarize ourselves with what this method actually does.
  • Java Thread Join Example
    In Java, using Thread.join() causes the current thread to wait until the specified thread dies. Using this method allows us to impose an order such that we can make one thread wait until the other completes doing what it needed to do, such as completing a calculation.
  • Examining Volatile Keyword with Java Threads
    When we declare a field as volatile, the JVM will guarantee visibility, atomicity and ordering of the variable. Without it the data may be cached locally in CPU cache and as a result changes to the variable by another thread may not be seen by all other threads resulting in inconsistent behaviour.
  • Java Threads Wait, Notify and NotifyAll Example
    The purpose of using notify() and notifyAll() is to enable threads to communicate with one another via some object on which to performing the locking. A thread using the wait() method must own a lock on the object. Once wait() is called, the thread releases the lock, and waits for another thread to either call notify() or notifyAll() method.
  • Java Thread Deadlock Example and Thread Dump Analysis using VisualVM
    Deadlock is a condition where several threads are blocking forever, waiting for the other to finish but they never do. This tutorial will discuss situations that will lead to Java Thread deadlock conditions and how they can be avoided. In addition, we will discuss using Java VisualVM to pinpoint and analyze the source of the deadlock conditions.
  • Java Thread Starvation and Livelock with Examples
    Starvation occurs when a thread is continually denied access to resources and as a result it is unable to make progress. Thread liveLock is a condition that closely resembles deadlock in that several processes are blocking each other. But with livelock, a thread is unable to make any progress because every time it tries the operation always fails.
  • Java Synchronization and Thread Safety Tutorial with Examples
    One of Java's many strengths come from the fact that it supports multithreading by default as has so from the very onset. One of the mechanisms that Java uses for this is via synchronization. When we use the synchronized keyword in Java we are trying limit the number of threads that can simultaneously access and modify a shared resource. The mechanism that is used in Java's synchronization is called a monitor.
  • Creating a Thread Safe Singleton Class with Examples
    In this tutorial we cover many examples of creating thread-safe singleton classes and discuss some of the shortfalls of each and provide some recommendations on best approaches for a fast, efficient and highly concurrent solution.
  • Java Threads and Concurrent Locks with Examples
    In this tutorial we will focus primarily on using the concurrent utilities and how these can make concurrent programming easier for us.

Please Share Us on Social Media


Leave a Reply

Your email address will not be published. Required fields are marked *